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ABSTRACT

The paper investigates the linearized dynamics of the three-
dimensional flow in finite-length helical inducers with attached
blade cavitation, with the purpose of understanding the impact
of the cavitating flow response on the rotordynamic forces ex-
erted by the fluid on the impeller of whirling turbopumps. The
flow in the inducer annulus is modeled as a fully-guided, incom-
pressible and inviscid liquid. Cavitation is included through the
boundary conditions on the suction sides of the blades, where it
is assumed to occur uniformly in a small layer of given thick-
ness. The complex acoustic admittance of the cavitating layer
depends on the void fraction of the vapor phase and the para-
metric value of the phase-shift damping used to account for the
energy dissipation. Constant boundary conditions for the to-
tal pressure are imposed at the inlet and outlet sections of the
inducer blade channels. The three-dimensional unsteady gov-
erning equations are written in rotating “body fitted” orthogonal
helical coordinates, linearized for small-amplitude whirl pertur-
bations of the mean steady flow, and solved by modal decompo-
sition. The whirl excitation and the boundary conditions gener-
ate internal flow resonances in the blade channels of the inducer,
leading to a complex dependence of the lateral rotordynamic
fluid forces on the whirl speed, the properties of the cavitating
layer and the flow coefficient of the machine. Multiple subsyn-
chronous and supersynchronous resonances are predicted. At
higher levels of cavitation the amplitudes of the resonances de-
crease and their frequencies approach the rotational speed (syn-
chronous conditions). Comparison with available experimental
data indicates that the present theory correctly evaluates the ob-
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served magnitude of the rotordynamic forces as functions of the
whirl frequency and their stabilizing or destabilizing effects on
the whirl motion. The results may help in understanding the
origin and sustain of some of the most critical and destructive
instabilities in whirling and cavitating turbopumps.

INTRODUCTION

It is widely recognized that turbopump cavitation can promote
the onset of dangerous self-sustained whirl instabilities (Rosen-
mann, 1965) and substantially alters the behavior of fluid-
induced rotordynamic forces on helical inducers (Arndt and
Franz, 1986; Brennen, 1994; Bhattacharyya, 1994). Previous
research efforts have mainly focused on the origin and analy-
sis of rotordynamic impeller forces for noncavitating conditions
(Chamieh et al., 1985; Jery et al., 1985; Jery, 1987; Shoji and
Ohasi, 1987; Ohasi and Shoji, 1987; Adkins and Brennen, 1988;
Tsujimoto et al., 1997; Uy and Brennen, 1999; Baskharone,
1999). Because of their greater complexity, rotordynamic fluid
forces in whirling and cavitating turbopump inducers have so
far received comparatively less attention in the open literature
and a satisfactory understanding of their behavior is still lack-
ing. The available experimental evidence indicates that cavi-
tation reduces the magnitude of the rotordynamic fluid forces,
significantly affecting the added mass of the rotor. It is worth
noting that the consequent increase of the critical speeds is of
special relevance to highly-loaded supercritical machines, as
commonly used in liquid propellant rocket feed systems. A sec-
ond major effect of cavitation is the introduction of a complex
oscillatory dependence of the rotordynamic fluid forces on the
whirl frequency. This finding seems to indicate the possible
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occurrence of resonance phenomena in the compressible cavi-
tating flow inside the blade channels under the excitation im-
posed by the eccentric motion of the rotor. Earlier theoretical
analyses have addressed the case of infinitely-long whirling he-
lical inducers with uniformly distributed travelling bubble cav-
itation (d’Auria et al., 1995; d’Agostino and d’Auria, 1997;
d’Agostino et al., 1998). The results confirmed the presence
of internal flow resonances and indicate that bubble dynamic
effects do not play a major role, except, perhaps, at extremely
high whirl speeds. They also suggest that the assumptions of
uniformly-distributed bubbly cavitation and infinitely long in-
ducers may contribute to explain the discrepancies between the-
oretical predictions and experimental data. Following up on this
work, we now investigate the dynamics of the unsteady three-
dimensional flow in finite-length helical inducers with attached
blade cavitation. Upon introduction of suitable simplifying ap-
proximations, the flow is linearized for small-amplitude whirl
motions of the rotor and solved by modal expansion. In spite
of the simplifications introduced in order to obtain an efficient
closed form solution, comparison with the available experimen-
tal data indicates that the present analysis correctly predicts
some of the observed features of the rotordynamic fluid forces
in cavitating inducers and provides useful practical indications
and fundamental understanding of their dependence on the rel-
evant flow conditions and parameters.

NOMENCLATURE

a sound speed
A cross-sectional flow area
b boundary equation
c specific heats, constant
e unit vector
f nondimensional force
F force
{ imaginary unit
I modified Bessel function of the first kind, integral
j blade index
J Bessel function of the first kind
k hub excitation mode index
K modified Bessel function of the second kind
KC cavitating layer parameter
L axial length of the inducer
L� blade axial length
l blade excitation mode index
m streamwise mode index
n blade-to-blade helical coordinate
N blade-to-blade mode function
NB number of blades
NR number of blade revolutions
O; O� origin of coordinate systems
p pressure
pt total or stagnation pressure
P blade axial pitch
P � blade-to-blade distance
_Q volume flow rate
r radial coordinate, radius
r radial vector
R radial mode function, cavity radius
s streamwise helical coordinate
S surface, streamwise mode function

t time
T temperature
u radial velocity component
u velocity vector
v azimuthal velocity component
w axial velocity component
x abscissa
y ordinate
Y Bessel function of the second kind
z axial coordinate
� void fraction
� blade angle
Æ cavitation layer thickness
ÆT thermal boundary layer thickness
" whirl eccentricity
� nondimensional damping coefficient
# azimuthal angle
� radial eigenvalue
� streamwise eigenvalue
� blade-to-blade eigenvalue
� density
� cavitation number
' velocity potential
� flow coefficient
! whirl angular velocity

 inducer rotational speed

Subscripts and Superscripts

B blade
C cavitation
F mean flow
H hub
L liquid
M mean
R radial
T tangential, blade tip
V vapor
q unperturbed value ofq
~q perturbation value ofq
q̂ complex representation of~q
q0 derivative, value ofq in the rotating frame
q� value ofq in the inducer-fixed frame
1 inducer inlet
2 inducer outlet

LINEARIZED DYNAMICS OF THE CAVITATING FLOW
IN A WHIRLING INDUCER

We examine the dynamics of an incompressible, inviscid liquid
of velocityu, pressurep, and density�L in a helical inducer ro-
tating with velocity
 and whirling on a circular orbit of small
eccentricity" at angular speed!. A number of simplifications
are introduced in order to reduce the problem to a form admit-
ting an analytical solution. As illustrated in Figure 1, a simple
helical inducer is considered, withNB radial blades, zero blade
thickness, axial lengthL, hub radiusrH , tip radiusrT , tip blade
angle�T , and constant pitch:

P = 2� rT tan�T = 2� r� tan�

The flow is fully wetted everywhere except on the suction
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sides of the blades, where attached cavitation occurs. The mean
flow velocity u in the blade channels is specified by the flow
coefficient� = w=
 rT , assuming fully-guided forced-vortex
flow with zero radial velocityu, uniform axial velocityw, and
angular velocity
F = v=r = 
=(1 � � cot�T ). With ref-
erence to Figure 2, cavitation is thought to occur on the suc-
tion sides of the blades in the form of slowly-moving attached
pockets uniformly distributed in a thin layer of given thickness
Æ � P and damped acoustic admittance�C a2C (1 + {�), where
� is the nondimensional damping coefficient. The static pres-
surepC in the cavitating layer is taken equal to the total pres-
surept of the surrounding liquid, assuming that the flow slows
down without losses in the low velocity region between the cav-
ities. We define stationary cylindrical coordinatesr; #; z with
center inO on the axis of the stator, rotating cylindrical coor-
dinatesr0; #0; z0 spinning at the rotor speed with center in the
same pointO, and rotating and whirling cylindrical coordinates
r�; #�; z� fixed in the inducer and with center inO� on its ge-
ometric axis, as shown in Figure 3. Then the equations of the
blade surfaces are:

b = #� +
2�

P
z� � �j = 0

where#j = 2�(j � 1)=NB is the angular location of thej-th
blade forj = 1; 2; : : : ; NB . The flow velocities in the station-
ary and rotating frames are related byu = u0 +
 � r and, to

Figure 1: Schematic of the flow configuration and inducer ge-
ometry.

Figure 2: Schematic of the thin layer of attached cavitation
pockets on the suction sides of the inducer blades.

the first order in the eccentricity:

r� = r � " cos(#� ! t) = r0 � " cos(#0 � !0 t)

#� = #�
 t+
"

r
sin(#� ! t) = #0 +

"

r
sin(#0 � !0 t)

z� = z = z0

where!0 = ! � 
.

Figure 3: Schematic of whirl motion, coordinates and
rotordynamic forces.

Neglecting Coriolis forces, the perturbation velocity~u in
the frame moving with the mean flow at axial velocityw and
angular speed
F is irrotational (~u = r') because it origi-
nates from a resting flow with conservative centrifugal forces.
Therefore, in the rotating frame the flow velocity isu0 =
(
F �
)� r+w +r' and the Bernoulli’s equation writes:

Z
@0u0

@t
� dx+

1

2
u0 � u0 �

1

2

2 r � r +

p

�L
=

=

Z
u0 � (r� u0) � dx

wherer�u0 = 2 (
F �
). Evaluating this equation between
the generic point and the corresponding unperturbed conditions
on a vorticity liner; # � constant, the linearized governing
equations for the flow perturbations (tildes) in the rotating frame
are:

r2 ~' = 0 and
@0 ~'

@t
+ u0 � r ~'+

~p

�L
= 0

These equations must be complemented with the appropriate
boundary conditions. Here, the flow velocity must satisfy the
kinematic conditionsDb=Dt = 0 on the hub, blade and casing
surfaces of equationsb = 0 in the relevant coordinates. In ad-
dition, the total pressure is assumed constant on the inlet and
outlet sections of the inducer.

In order to simplify the boundary conditions, let us introduce
orthogonal helical coordinatesr; n; s of unit vectorser; en; es
as shown in Figure 4 with:

n = (#� #j)
NB

2�
+ z

NB

P

s = z
sin2 �

P
� (#� #j)

cos2 �

2�

Here, for convenience,n is normalized with the channel width
P � = (P=NB) cos� and s with the blade lengthL� =
P= sin� at the radius corresponding to the angle�. The ro-
tating and body-fixed orthogonal helical coordinatesr0; n0; s0
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Figure 4: Schematic of the transformation from cylindrical co-
ordinatesr; #; z to the orthogonal helical coordinatesr; n; s.

and r�; n�; s� are similarly defined in terms ofr0; #0; z0 and
r�; #�; z�. Then, the equations of the hub, blade pressure sides,
blade suction sides and casing surfaces are:

b = r� � rH = 0

b = n� = 0

b = n� � 1 + Æ=P � = 0

b = r � rT = 0

whereÆ = Æ(t). From the continuity equation for the layer
�CÆ � constant, the definition ofa2C = dpt=d�C and the
Bernoulli’s equation~pt=�L = �@'=@t it follows that:

dÆ

dt
=

�L Æ

�C a2C

@2 ~'

@t2

With these results, expressingr2' = 0 and@b=@t+u0 �rb = 0
in the rotating helical coordinatesr0; n0; s0:

@2 ~'

@r02
+

1

r0
@ ~'

@r0
+

N2
B

P 2 cos2 �

@2 ~'

@n02
+

cos2 �

4�2r02
@2 ~'

@s02
= 0

and the linearized boundary conditions are found to be:

@ ~'

@r0
= 0 on r0 = rT

@ ~'

@r0
= " (! �
F ) sinH on r0 = rH

@ ~'

@n0
=

" (! � 
F )P
2 cos2 �

2� r0NB
cosH on n0 = 0

@ ~'

@n0
+KC

@2 ~'

@t2
=

"(! �
F )P
2 cos2 �

2� r0NB
cosH on n0 = 1

@ ~'

@t
= 0 on s0 = s01 = �

cos2 �

2NB
; s01 +NR

where

H =
2�

NB
n0 sin2 � � 2� s0 + #j � !0 t

KC =
�L Æ P

�

�C a2C(1 + {�)

is a parameter describing the behavior of the cavitating layer,
andNR is the number of revolutions of the blade channels about
the inducer axis.

With the above boundary conditions the Laplace equation for
~' = Re f'̂g yields a well-posed boundary value problem for

the complex velocity potential̂'. If the variable blade angle�
is approximated by a constant value�M at some suitable mean
radiusrM , the separable solution (Lebedev, 1965) in the blade
channels0 � n0 � 1 is:

'̂ = '̂H + '̂B

where

'̂H =

+1X
k=1

+1X
m=1

Rkm(r0)Nk(n
0)Sm(s0) e�{ !

0t

'̂B =
+1X
l=1

+1X
m=1

Rlm(r0)Nlm(n0)Sm(s0) e�{ !
0t

are the solutions corresponding to the hub and blade excitation.
In the expression of̂'H :

Rkm(r0) = Ikm �

�
K 0
qm(�

�
k rT ) Iqm (�

�
k r

0)� I 0qm(�
�
k rT )Kqm(�

�
k r

0)

I 0qm(�
�
k rH )K 0

qm(�
�
k rT )�K 0

qm(�
�
k rH ) I 0qm(�

�
k rT )

Nk(n
0) = cos

�
n0
q
��2k

�

are the coupled modal solutions corresponding to the hub exci-
tation, where:

��k =
NB

P cos�M

q
��2k

and
p
��2k are the (complex) principal roots of the equation:

q
��2k sin

q
��2k = �KC !

02 cos
q
��2k

Similarly, in the expression of̂'B :

Rlm(r0) = Y 0
qm(�lmrH) Jqm(�lmr

0)� J 0qm(�lmrH)Yqm(�lmr
0)

Nlm(n0) =
I(1) cosh(�lm n0)� I(0) cosh[�lm(n0 � 1)]

�lm sinh �lm �KC !02 cosh �lm
+

�
I(0)KC!

02

�lm sinh �lm �KC !0
2 cosh �lm

sinh[�lm(n0 � 1)]

�lm

are the coupled modal solutions corresponding to the blade ex-
citation, where�lm are the (positive) roots of the equation:

J 0qm(� rH )Y 0
qm(� rT )� Y 0

qm(� rH ) J 0qm(� rT ) = 0

�lm = �lm
P cos�M

NB

and

I(n0) =
"(! �
F )P

2 cos2 �M
�NBNR

e{[(2�=NB)n
0 sin2 �M+#j ] �

�

R rT
rH

Rlm(r0) dr0R rT
rH

R2
lm(r0) r0 dr0

Z s0
1
+NR

s0
1

e�{2� s
0

Sm(s0) ds0

Finally, in both of the expressions of̂'H and'̂B :

qm =
m

2NR
cos�M and Sm(s0) = sin

m�(s0 � s01)

NR
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The instantaneous fluid force on the inducer is:

~F =

I
SH[SB

p(x0j"6=0 ; t) dS

where the pressure:

p = p� �L

�
@ ~'

@t
�


F � 


2�

@ ~'

@s0

�

is evaluated for" 6= 0 at the perturbed position of the hub and
blade surfacesSH andSB . Thus, expanding to the first order in
the eccentricity and noting that the mean pressurep(r0j"=0 ; t)
makes no net contribution to the force on the inducer in its cen-
tered position, the following equation is obtained:

~F � �

I
SH[SB

�
@p

@r0

����
"=0

�
r0j"6=0 � r0j"=0

�
+ ~p(x0j"=0 ; t)

�
dS

Here the first term is the buoyancy force on the displaced in-
ducer due to the radial gradient of the mean pressure:

dp

dr0
= �L


2r0 (1� �2 cot2 �T )

and the second term is the force due to the pressure perturba-
tions generated by the eccentric motion. The components of the
instantaneous rotordynamic force are therefore obtained by in-
tegrating the projections of the elementary pressure forces along
the axes of the whirling frame of center inO� and unit vec-
torseR; eT ; ez , as shown in Figure 5. Finally, further integra-
tion over a period2�=!0 yields the time-averaged rotordynamic
forceF on the inducer.

Figure 5: Schematic of the transformation from the rotating
frameO; er0 ; e#0 ; ez0 to the whirling frameO�; eR; eT ; ez

The entire flow has therefore been determined in terms of
the material properties of the two phases, the geometry of the
inducer, the nature of the excitation, and the assigned quantities
�, Æ, �C , aC and�.

RESULTS AND DISCUSSION

The rotordynamic fluid forces predicted by the present model
are compared with the data measured by Bhattacharyya (1994)
on a three-bladed helical inducer withrT = 5:06 cm,rH=rT =
0:4, �T = 9o, L = 2:43 cm, " = 0:254 mm. The data re-
fer to operation in water at room temperature, rotational speed

 = 3; 000 rpm, variable whirl speed, and several values of the
inlet flow coefficient�1 = _Q=A1
rT (not corrected for hub
blockage) and cavitation number�1 = (p1 � pV )=

1
2�L


2r2T .
Figure 6 shows some typical experimental results for the

nondimensional rotordynamic force~f = F =�"2P�L

2 rT on

the sample inducer tested under developed cavitation at�1 =

0:049 and�1 = 0:106. Notice that the radial and tangential
force components do not vary quadratically with the normalized
whirl speed!=
, and that their behavior is characterized by
multiple zero crossings. The radial force (Figure 6a) is essen-
tially positive (destabilizing) for!=
 < �0:2, oscillates above
and below zero for�0:2 < !=
 < 0:3, and remains essentially
negative (stabilizing) for!=
 > 0:3. Similar behavior was ob-
served for other cavitation numbers (Bhattacharyya, 1994). The
tangential force (Figure 6b) is positive over most of the sampled
frequencies, but also exhibits rapid oscillations near the origin.
In all of the experiments of Bhattacharyya a peculiar feature of
the tangential force is the occurrence of a sharp positive (desta-
bilizing) peak at!=
 � 0:2, whose intensity increases at higher
cavitation numbers and lower flow coefficients.

Figure 6 also shows the rotordynamic forces predicted by the
present model (continuous line) assumingRe

�
KC


2
	
= 2:5

for the real part of the cavitation parameter and� = 0:045 for

−0.4 −0.2 0 0.2 0.4 0.6
−1.5

0

1.5

3

ω/Ω

f
R

(a) Radial rotordynamic force

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.5

0

0.5

1

1.5

ω/Ω

f
T

(b) Tangential rotordynamic force

Figure 6: Nondimensional rotordynamic forcesfR andfT on
the test inducer as a function of the ratio!=
 of the whirl and
rotational speeds. The experimental values (circles) obtained by
Bhattacharyya (1994), under developed cavitation conditions at
�1 = 0:049 and�1 = 0:106 are compared with the model
predictions (solid line) for� = �1=(1 � r2H=r

2
T ) = 0:0583,

Re
�
KC 
2

	
= 2:5, � = 0:045 andNR = 0:285.
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the nondimensional damping coefficient. An effective value of
the nondimensional blade channel length,NR = 0:285, inter-
mediate between the geometric length of the blades and their ac-
tual overlap, has been used in the computations in order to em-
pirically compensate for the errors introduced by the formula-
tion in orthogonal helical coordinates. In addition, the pressure
gradient of the mean flow has been evaluated for a decreased
value of the swirl speed
F in order to account for the gradual
rotational acceleration of the flow entering the inducer. Com-
parison with the experimental data shows that, in spite of its
approximate nature, the present theory correctly captures the
observed magnitude of the rotordynamic forces and the salient
features of their whirl frequency spectrum, including their sta-
bilizing or destabilizing effects on the eccentric motion of the
inducer.

The complex dependence of the lateral rotordynamic fluid
forces on the whirl speed is due to the occurrence of internal
resonances of the cavitating flow in the blade channels under the
excitation generated by the whirl motion of the inducer. Given
the functional dependence of the solution, it appears that the
system has an infinite set of (generally complex) critical whirl
speeds:

!0lm = !lm �
 = �

r
�lm tanh �lm

KC

symmetrically located above and below the rotational speed

(synchronous conditions). The critical speeds are seen to de-
pend on the mode numbers of the flow perturbations and the
parameterKC used to characterize the occurrence of cavita-
tion on the suction sides of the blades. The extent of cavita-
tion increases when the value of this parameter is varied from
zero, corresponding to fully-wetted flow conditions, to larger
and larger values. In the special case of no cavitation damping
(� = 0 ), KC is real and the boundary value problem for'̂ is
self-adjoint, with real eigenvalues�2 and�2. In the presence of
damping, the series for̂' converge rapidly even for low subcrit-
ical values of� � 1, and only the first few modes are needed
in the computations. For these modes the eigenvalues are of or-
der unity or slightly larger. Since cavitating flows are inherently
dissipative, it follows that the critical whirl speeds of practical
importance tend to concentrate in two small ranges just above
and below synchronous conditions as soon as the intensity of
cavitation is sufficient for raising the real part ofKC


2 well
above unity.

The relation ofKC to the extent of cavitation can be inves-
tigated with the help of a suitable flow model. Here we make
use of the classical quasi-homogeneous isenthalpic cavitation
model with thermal effects described by Brennen (1995) and
modified by Rapposelli and d’Agostino (2001) to account for
the concentration of active nuclei. The behavior of the real part
of KC


2 with the local void fraction� is illustrated in Fig-
ure 7 for water at room and boiling temperature. The results
depend parametrically on the blade channel blockageÆ=P � and
the ratioÆT =R between the thermal boundary layer thickness
surrounding a spherical cavity and the radius of the cavity it-
self. The parameterÆT =R is nearly constant during the ther-
mally controlled growth of cavitating bubbles and its value can
be estimated as a function of the flow conditions, the thermo-
physical properties of the two phases, and the concentration
of active cavitation nuclei (Rapposelli and d’Agostino, 2001).
Here the choice of a higher blockageÆ=P � at the boiling tem-

perature reflects the greater penetration of cavitation in the liq-
uid at elevated temperatures. From Figure 7 it appears that
the valueRe

�
KC


2
	

previously used for the prediction of the
rotordynamic forces would correspond to void fractions ranging
from 4 � 10�2 at room temperature to10�1 at boiling condi-
tions. The average separation between bubbles would then be
on the order of 2 to 3 diameters, not unrealistic mean values for
typical cavitation on inducer blades.

The influence of the cavitation parameter on the solution is
illustrated by the waterfall plots of Figure 8. The figure clearly
show that the degree of cavitation has a major impact in lo-
cating the critical speeds and determining the magnitude of the
rotordynamic forces as functions of the whirl speed. Two sets
of subsynchronous and supersynchronous resonances are pre-
dicted. At higher values of the cavitation parameter the ampli-
tudes of the resonances decrease, as their frequencies approach
synchronous conditions. At low values ofRe

�
KC


2
	

the void
fraction is likely to violate the condition:

(� Æ)min � " sin�M

for the survival of the cavitating layer during a complete oscil-
lation cycle of the whirl motion. With typical choices of the
relevant quantities, the minimum void fraction is estimated to
be�min � 10�2 � 10�1. Hence, using the results of Figure 7,
the physically significant solutions of the present theory are re-
stricted to minimum values of the cavitation parameter:

Re
�
KC 
2

	
min

� 1 to 10

respectively corresponding to room temperature and boiling
conditions. In this range Figure 8 indicate the presence of two
relatively weak subsynchronous critical speeds near!=
 �
0:5, and a second couple of considerably more intense super-
synchronous critical speeds in the vicinity of!=
 � 1:5. The
spectral locations of these critical speeds evocatively overlap
with the reported ranges of free-whirl instabilities in cavitating
turbopumps.

As a final comment, comparison of the data reported in Fig-
ure 6 with the results of Figure 8 indicates that the scant ex-
perimental information currently available on the behavior of

10
−3

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
2

α

K
C

Ω2

T
L
=20°C

T
L
=100°C

Figure 7: Nondimensional cavitation parameterKC 
2 as a
function of the void fraction in the cavitating layer for un-
damped operation in water atTL = 20oC (ÆT =R = 0:3,
Æ=P � = 3%) andTL = 100oC (ÆT=R = 1, Æ=P � = 10%).
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rotordynamic forces in cavitating turbopumps only covers a
limited portion of the frequency spectrum, and probably not the
most significant one in connection with the onset of cavitation-
induced whirl instabilities.

LIMITATIONS

We now briefly examine the restrictions imposed to the present
theory by the various simplifying approximations that have
been made. Specifically we shall discuss the limitations due to
the assumption of thin-layer cavitation, to the neglect of Corio-
lis forces, to the applicability of the formulation in orthogonal
helical coordinates to the analysis of cavitating inducers, and
to the use of the linear perturbation approach in deriving the
solution.

The assumption of thin-layer cavitation implies that the
thickness of the cavitating region is significant smaller than the
blade channel width and that its properties can be approximated

−1 −0.5 0 0.5 1 1.5 2 2.5

10
0

10
1

10
2

10
3

−10

0

10

20

ω/Ω

Re{K
C

Ω2}

f
R

(a) Radial rotordynamic force

−1 −0.5 0 0.5 1 1.5 2

10
0

10
1

10
2

−20

−10

0

10

ω/Ω

Re{K
C

 Ω2}

f
T

(b) Tangential rotordynamic force

Figure 8: Waterfall plots of the nondimensional rotordynamic
forcesfR andfT on the test inducer as a function of the ratio
!=
 of the whirl and rotational speeds and the real part of the
nondimensional cavitation parameter,KC 
2. The flow coef-
ficient is� = 0:0583, the nondimensional damping coefficient
is � = 0:045 and the effective length of the blade channels is
NR = 0:285.

as constant over the entire length of the blades for the purpose
of evaluating the rotordynamic forces. Although clearly none of
these conditions is rigorously met in cavitating inducers, com-
parison with earlier results obtained by d’Agostino and his col-
laborators (1997,1998) for uniformly distributed bubbly cavita-
tion shows that the predicted values of the rotordynamic forces
are remarkably independent on the precise geometry of flow
cavitation.

The neglect of Coriolis forces implies that
F � 
, a con-
dition that is approximately satisfied in lightly loaded inducers.

For the formulation in orthogonal helical coordinates to be
valid the geometric length of the blades should be comparable
to their actual overlap, which is rarely the case in low blade
angle inducers. Formally, this is probably one of the most strin-
gent limitations of the present analysis and can only be partially
circumvented by artificially introducing an empirical “effective
length” of the blade channels.

Finally, the perturbation approach simply requires that" �
rT , a condition that can safely be assumed in the analysis of
whirl instabilities of cavitating turbomachines.

SUMMARY AND CONCLUSIONS

This investigation reveals a number of important flow phenom-
ena occurring in whirling and cavitating helical inducers. The
results clearly indicate that blade cavitation drastically modi-
fies the rotordynamic forces exerted on the impeller by the sur-
rounding fluid. The dynamic response of the cavitating flow
to the periodic excitation imposed by the whirl motion gener-
ates multiple subsynchronous and supersynchronous flow reso-
nances in the blade channels, interfering with the more regular
spectral behavior of the rotordynamic fluid forces, typical of
noncavitating operation. The extent of cavitation has a major
impact in locating the critical speeds and determining the inten-
sity of flow-induced rotordynamic forces. At higher levels of
cavitation the amplitudes of the flow resonances decrease, and
their frequencies approach the rotational speed of the impeller
(synchronous conditions). In spite of its approximate nature, the
present theory correctly captures the main observed features of
the rotordynamic forces. More generally, we are confident that
it contributes some useful fundamental insight into the com-
plex physical phenomena responsible for the onset and sustain
of free-whirl instabilities in cavitating turbopumps.
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