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ABSTRACT 

This paper investigates the linearized dynamics of the 
rotordynamic forces exerted by the fluid on the rotor in whirling 
and cavitating radial impellers with thin logarithmic blades and 
constant eccentricity and whirl speed. The flow is modeled as an 
incompressible, inviscid, fully-guided liquid except on the 
suction sides of the blades, where attached cavitation occurs in a 
small layer of given acoustic admittance depending on the 
assumed values of the layer thickness and void fraction. 
Constant boundary conditions for the total pressure are imposed 
at the inlet and outlet sections. The three-dimensional unsteady 
governing equations are written in rotating orthonormal 
logarithmic spiral coordinates, linearized for small-amplitude 
whirl perturbations of the mean steady flow, and solved by 
modal decomposition. Rotordynamic fluid forces in centrifugal 
pumps are found to be almost insensitive to cavitation; also, 
they do not undergo the internal flow resonances in the blade 
channels predicted by similar flow models and observed in 
whirling and cavitating axial inducers. Comparison with the 
available experimental results shows that the present theory 
underestimates the intensity of rotordynamic impeller forces, but 
correctly captures their observed parabolic trend as functions of 
the whirl frequency, thus indicating that it can usefully 
contribute to identify the main physical phenomena involved 
and provide useful practical indications on their dependence on 
the relevant flow conditions and parameters. 

 
INTRODUCTION 

Local flow phenomena like tip leakage capable of 
interfering with the fluid dynamic loads on the blades are known 
to be the dominant source of rotordynamic whirl forces in 
compressible flow machines (Thomas, 1958 [1], Alford, 1958 
[2], Martinez-Sanchez et al., 1995 [3], Song and Martinez-
Sanchez, 1997a [4], Martinez-Sanchez, 1997b [5]). On the other 
hand, in turbopumps also the reaction of the entire flow to the 
impeller whirl motion can often be significant (d'Auria, 
d’Agostino and Brennen, 1995 [6]; d’Agostino and d’Auria, 
1997 [ 7 ]; d’Agostino, d’Auria and Brennen, 1998 [ 8 ], 
d’Agostino and Venturini, 2002 [ 9 ]). Previous turbopump 
research has mainly focused on the origin and analysis of 

rotordynamic impeller forces in noncavitating conditions 
(Chamieh et al., 1985 [10]; Jery, Acosta and Caughey, 1985 
[11]; Jery, 1987 [12]; Shoji and Ohashi, 1987 [13]; Ohashi and 
Shoji, 1987 [14]; Adkins and Brennen, 1988 [15]; Arndt et al., 
1989 [16]; Arndt et al., 1990 [17]; Tsujimoto et al., 1997 [18]; 
Uy and Brennen, 1999 [19]; Baskharone, 1999 [20], Hiwata and 
Tsujimoto, 2002 [21]).  

Because of their greater complexity, rotordynamic fluid 
forces in whirling and cavitating turbopump impellers have so 
far received comparatively less attention in the open literature 
and a satisfactory understanding of their behavior is still 
lacking. However, it is widely recognized that turbopump 
cavitation in axial inducers can promote the onset of dangerous 
self-sustained whirl instabilities (Rosenmann, 1965 [22]) and 
substantially alters the behavior of fluid-induced rotordynamic 
forces (Arndt and Franz, 1986 [ 23 ]; Brennen, 1994 [ 24 ]; 
Bhattacharyya, 1994 [25]). The available experimental evidence 
indicates that inducer cavitation reduces the magnitude of the 
rotordynamic fluid forces, significantly affecting the added mass 
of the rotor. The consequent increase of the critical speeds is of 
special relevance to highly-loaded supercritical machines, as 
commonly used in liquid propellant rocket feed systems. A 
second major effect of inducer cavitation is the introduction of a 
complex oscillatory dependence of the rotordynamic fluid forces 
on the whirl frequency. This finding seems to indicate the 
occurrence of resonance phenomena in the compressible 
cavitating flow inside the blade channels under the excitation 
imposed by the eccentric motion of the rotor. Earlier theoretical 
analyses confirmed the presence of internal flow resonances and 
indicate that bubble dynamic effects do not play a major role, 
except, perhaps, at extremely high whirl speeds (d'Auria, 
d’Agostino and Brennen, 1995 [26]; d’Agostino and d’Auria, 
1997 [ 27 ]; d’Agostino, d’Auria and Brennen, 1998 [ 28 ], 
d’Agostino and Venturini, 2002 [9]). On the other hand, no 
resonant phenomena seem to occur radial impellers, where the 
limited available evidence indicates that cavitation only has a 
marginal effect on rotordynamic whirl forces (Franz et al., 1989 
[29]). Following up on our work on whirling and cavitating 
inducers, we now apply a similar approach to the analysis of the 
unsteady two-dimensional flow in whirling radial impellers with 
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attached blade cavitation, in order to gain some better 
understanding of the fundamental reasons for the different 
behavior of rotordynamic fluid forces in this kind of machines. 
Upon introduction of suitable simplifying approximations, the 
flow is linearized for small-amplitude whirl motions of the rotor 
and solved by modal expansion. In spite of the simplifications 
introduced in order to obtain an efficient closed form solution, 
comparison with the available experimental data shows that the 
present analysis correctly predicts some of the observed features 
of the rotordynamic fluid forces in cavitating inducers and 
provides useful practical indications of their dependence on the 
relevant flow conditions and parameters.  

NOMENCLATURE 
a  sound speed 
b  axial length of the inducer 
c  constant 
e  unit vector 
E  cavitation parameter 
F  force 
i  imaginary unit 
j
K

 blade index 
E

m
 cavitating layer parameter 

 streamwise mode index 
n  blade-to-blade spiral coordinate 
NB  number of blades 
O, O∗

p
 origins of coordinate systems 

 pressure 
pt  total or stagnation pressure 
r  radial coordinate, radius 
r  radial vector 
s  streamwise spiral coordinate 
t  time 
T  aspect ratio 
u  velocity vector 
v  azimuthal velocity component 
z  axial coordinate 
α  void fraction 
β  blade angle 
δ  cavitation layer thickness 
ε  whirl eccentricity 
ϑ  azimuthal angle 
ρ  density 
ϕ  velocity potential 
ω  whirl angular speed 
Ω  impeller rotational speed 

Subscripts and superscripts 

C  cavitation 
F  mean flow 
H  hub 
L  liquid 
R  radial 
T  tangential, blade tip 
q  unperturbed value of  q
˜ q  perturbation value of  q

ˆ q  complex representation of  q
′ q 
∗
 derivative, value of  in the rotating frame q

  value of q  in the inducer-fixed frame q

LINEARIZED DYNAMICS OF THE CAVITATING FLOW 
IN A WHIRLING INDUCER 

 

Figure 1. Schematic of the pump geometry 

We examine the dynamics of an incompressible, inviscid 
liquid of velocity u , pressure , and density p ρL  in a centrifugal 
pump rotating with velocity Ω  and whirling on a circular orbit 
of small eccentricity ε  at angular speed ω . A number of 
idealizations are introduced in order to obtain an analytical 
solution. Figure 1 illustrates the simple centrifugal pump 
considered, with N  logarithmic-spiral blades of equation B

βϑ tan−=rdr
H

, zero blade thickness, axial length b , hub 
radius r , tip radius , blade angle rT β .  

 

Figure 2. Velocity triangle. 

The flow is fully wetted everywhere except on the suction 
sides of the blades, where attached cavitation occurs. The mean 
flow velocity u  in the blade channels (Fig. 2) is specified by 
the flow coefficient TT ru Ωφ = , assuming fully-guided forced-
vortex flow with zero axial velocity w , radial velocity 

ruru TT= , and tangential velocity: 
( ) βφΩΩβφΩ tan2tan 2222224222

TT rrrrv −+=  
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Figure 3. Cavitating layer. 

With reference to Figure 3, cavitation is thought to occur on 
the suction sides of the blades in a thin layer of given variable 
thickness δ  (constant coordinate , see below) and acoustic 
admittance 

n
ρCa C

2

C

pt

. For simplicity, it is also assumed that the 
static pressure p  in the cavitating layer is nearly equal to the 
total pressure  of the surrounding liquid. 

We define stationary cylindrical coordinates r,ϑ, z  with 
center in O  on the axis of the stator, rotating cylindrical 
coordinates ′ , ′ ϑr  , ′ z 

∗,

 spinning at the rotor speed with center in 
the same point O , and rotating and whirling cylindrical 
coordinates r ϑ ∗ , z ∗  fixed in the inducer and with center in O  
on its geometric axis.  Then the equations of the blade surfaces 
are: 

∗

( ) 0cotln =−+= βϑϑ j
Hr
rb  

where ( ) Bj Nj 12 −= πϑ  is the angular location of the j -th 
blade for .  The flow velocities in the stationary 
and rotating frames are related by u

j = 1, 2,...,NB

= ′ u + Ω × r  and, to the 
first order in the eccentricity (Fig. 4): 

r ∗ = r − ε cos ϑ − ωt( ) = ′ r − ε cos ′ ϑ − ′ ω t( )  

( ) ( )t
r

t
r

t ωϑεϑωϑεΩϑϑ ′−′+′=−+−=∗ sinsin  
∗z = ′ z = z . 

where ′ ω = ω − Ω . 

 

Figure 4. Schematic of whirl motion and coordinates. 

The perturbation velocity u  generated by the blade motion is 
irrotational (

˜ 
˜ u = ∇ϕ ) because the flow originates from a 

uniform stream. Therefore, in the rotating frame the flow 
velocity is u ′ = u − Ω × r  and the Bernoulli's equation writes: 

( )tBpd
t L

=+⋅−′⋅′+⋅
′′

∫ ρ
Ω

∂
∂ rruuxu 2

2
1

2
1  

where  is the unsteady Bernoulli’s constant. Hence the 
linearized governing equations for the flow perturbations 
(tildes) at any given point in the rotating frame are: 

B t( )

∇2 ˜ ϕ = 0      and      0
~~~

=+∇⋅′+
′

L

p
t ρ

ϕ
∂
ϕ∂ u  

Here the flow velocity must satisfy the kinematic conditions 
0=DtDb

b = 0
 on the hub, blade and casing surfaces of equations 

 in the relevant coordinates. In addition, the total pressure 
is assumed constant on the inlet and outlet sections of the 
inducer. 

In order to simplify the derivation of the solution, let us 
introduce orthogonal spiral coordinates n, s  (Campos and Gil, 
1995 [30]; Visser, 1999 [31]) as shown in Figure 5, with: 

( ) β
π

ϑϑ
π

tanln
22 








+−=

H

B
j

B

r
rNN

n  

( ) ( ) ( )
( ) βϑϑββ 2cos

ln
ln

ln
cossin

HT

H
j

HT rr
rr

rr
n +−−=  

For convenience, n  and s  are normalized to map a channel into 
a rectangle . Rotating and body-fixed orthogonal 
spiral coordinates n  and  are similarly defined in 
terms of r 

0,1( ) 0,1(
′ , s 

′ , ′ ϑ

× )
′ n ∗, s∗

  and r ∗,ϑ ∗ . The third dimension z  is easily 
added. Then, the equations of the inlet, blade pressure side, 
blade suction side and outlet surfaces are: 

b = s∗ = 0
∗

. 
b = n = 0

∗
. 

b = n −1 + δ = 0. 
∗b = s − 1 = 0. 

where δ = δ t( ) .  

 

Figure 5. Schematic of the logarithmic-spiral coordinates. 
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From the continuity equation for the layer ρCδ ≡ constant , 
the definition of CC ddp ρ=2a  and the Bernoulli's equation 

tp L ∂ϕ∂ρ ~~ −≅  it follows that: 

2

2

2

~

tadt
d

CC

L

∂
ϕ∂

ρ
δρδ =  

With these results, and expressing ∇2 ˜ ϕ = 0  and 
0=∇⋅′+ btb u∂∂  in the rotating helical coordinates : ′ r , n ′ ′ , ′ s 

~2

( ) 0
cos4

~

ln
cos~

222

2

2

2

2

2
2 =

′
+

′
=∇′

n
N

srr
B

HT ∂
ϕ∂

βπ∂
ϕ∂βϕ  

and the linearized boundary conditions are found to be: 

0
~

=
t∂
ϕ∂       on      ′ s = 1   and   ′ s = 0 






+







 ′
+

′







′=
′

′

β
Θ

β
Θββωπε

∂
ϕ∂

cos
sin

sin
cossincos2~

2
s

H

T
H

B r
rr

Nn
 

Θ ′







+

′−

sin
1

T

s

H

T u
r
r       on       ′ n = 0

( ) =
′








−+ ′ nNrrr

N
t

KN

B
s

HTH

B
E

B

∂
ϕ∂ββπ

βπ∂
ϕ∂

π

~
cossin4exp

cos2

~

2 2222

2

 

( ) +






 ′
+

′








−′= ′ β

Θ
β
Θββπβωε

cos
sin

sin
coscossin2expsin

B
s

HTH Nrrr
 

β
Θββπε 2

31

2 cos
sincossin6exp

′








−








+

′−

B

s

H

T

H

T

Nr
r

r
u        on    ′ n = 1

Here: 

t
r
rsn

N
t

H

T

B
j ωββπϑωϑΘ ′−







′−′+=′−′=′ tanlncos2 2  

and: 

β
ρ

δρπ 2
22

2

cos4

CCB

L
E aN

K =  

is a parameter describing the dynamic behavior of the cavitating 
layer and the extent of cavitation. 

With the above boundary conditions the Laplace equation 
for ˜ ϕ = Re ˆ ϕ { } yields a well-posed boundary value problem for 
the complex velocity potential ˆ ϕ . The separable solution in the 
blade channels is: 

( )∑
+∞

=

′−







 ′



 





 ′+





 ′=

1

2
2

2
1 sinsinhcoshˆ

m

ti
mm esmncnc ωπννϕ  

with eigenvalues: 

( )HTB
m rrN

mi
ln

cos2 22
2 βπν =  

The instantaneous fluid force on the inducer is then: 
( )∫ ≠

′=
blades 0

,~~ SrF dtp
ε

 

where, with second order error in the perturbations, the 
pressure: 

ϕρ
∂
ϕ∂ρ ~~~ ∇⋅′−−= uLL t

p  

is evaluated for at the unperturbed position of the impeller 
(ε = 0). Because no hub is present, no buoyancy force acts on 
the displaced inducer due to the radial gradient of the mean 
pressure. The components of the instantaneous rotordynamic 
force are therefore obtained by integrating the projections of the 
elementary pressure forces along the axes of the whirling frame 
of center in O  and unit vectors e , oriented as the 
eccentricity and its normal in the direction of the whirl motion. 
Finally, further integration over a period 

∗
R , eT

ωπ ′2  yields the time-
averaged rotordynamic force F  on the inducer.  

The flow has then been determined in terms of the material 
properties of the two phases, the geometry of the inducer, the 
nature of the excitation, and the assigned quantities φ , δ , ρC , 

. aC

 
 

 
Figure 6. Comparison of the normalized radial and tangential 
rotordynamic forces, f  and f , obtained from the present 
theory (continuous line) and the experimental results of Jery, 
1987 [12] (divided by six, circles) for a centrifugal impeller with 

R T

rpm 1000=Ω , , 5=BN 060= .0φ , °= 23β , , mm 81=Tr
b = 16 mm, 5.0=TrHr  and . 22KΩ =E

RESULTS AND DISCUSSION 
In centrifugal pumps, the measured rotordynamic fluid 

forces in presence of cavitation are very similar to those for 
fully-wetted flows, consistently with the experimental results 
(Jery 1987 [12]; Franz et al., 1989 [29]). Therefore the 
rotordynamic fluid forces predicted by the present model are 
compared with the data measured by Jery, 1987 [12], at Caltech 
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on a five-bladed centrifugal pump with r , 
, 

T = 81 mm
rH = 40 mm β = 23° , b = 16 mm , ε = 0.126 mm , without 
cavitation. The results obtained by Franz, 1989 [29], for a 
cavitating radial impeller with a volute are also very similar. The 
data refer to operation in water at room temperature, flow 
coefficient φ = 0.092 , rotational speed Ω = 1000 rpm , and 
variable whirl speed. 

The calculated rotordynamic forces shown in the figures 
have been nondimensionalized by περL rT

2Ω 2b . Comparison 
with the experimental results by Jery, 1987 [12] (Fig. 6) shows 
that the calculated forces are about six times smaller than 
experimentally measured, but their familiar quadratic behavior 
with the whirl speed is well captured by the theoretical results 
and the vertex of the parabola is correctly located. The reasons 
for the observed discrepancy have not been identified with 
certainty, but they are likely to be mostly related to the 
approximate nature of the boundary conditions at the inlet and 
outlet sections of the impeller. In their present form these 
boundary conditions do not realistically account for the dynamic 
response of the flow in the impeller eye and diffuser (or volute). 
The inclusion of these effects would introduce significant 
additional contributions to the inertial reaction of the flow on 
the impeller, increasing the magnitude of the rotordynamic 
forces.  

Clearly with present notations rotordynamic forces are 
destabilizing when the radial component is positive and, for the 
onset of nonsynchronous whirl, when the tangential component 
has the same sign as the whirl speed ω . Hence, with reference 
to Figure 6, the predicted radial force is generally destabilizing 
except near synchronous conditions ( ω ≅ Ω ), while the 
tangential force would promote subsynchronous shaft motions 
in the range of whirl speeds 0 < ω < 0.7. Also notice that both 
components of the rotordynamic force are relatively small in the 
vicinity of 5.0=Ωω , corresponding to the familiar “whip 
conditions” of journal bearings (Newkirk and Taylor, 1925 [32], 
Hori, 1959 [33]).  

Present results for radial turbopumps are also radically 
different from those obtained for cavitating inducers. In this 
case both the experiments of Bhattacharyya et al., 1997 [34], 
and our previous theoretical investigations based on the same 
approach used herein (d’Agostino, d’Auria and Brennen, 1998 
[28]; d’Agostino and Venturini, 2002 [9]) showed a more 
complex dependence of the rotordynamic forces on the whirl 
speed. The spectral response of these forces as functions of the 
whirl frequency displayed a number of multiple peaks, which 
the theory indicated to be related with the occurrence of internal 
resonances of the cavitating flow in the blade channels under the 
excitation provided by the eccentric motion of the inducer. From 
the mathematical standpoint, these resonances are the 
consequence of the (nearly) real nature of the flow eigenvalues, 
which leads to an infinite set of lowly-damped critical whirl 
speeds, symmetrically located above and below the rotational 
speed Ω  (synchronous conditions). Physically, the peaks of the 
rotordynamic forces are due to the occurrence of standing 
pressure waves with frequency-dependent wavelength in the 
blade channels. Hence, at some specific excitation frequencies 
the wavelength of the resonant flow perturbations is 

commensurable with the revolution of the blade channel around 
the hub. In this case the pressure distribution acts in a strong and 
spatially coherent fashion on the inducer, leading to the 
intensification of the resulting forces.  

Rotordynamic forces on radial impellers, on the other hand, 
do not peak at any whirl frequency. Mathematically, in this case 
the critical whirl speeds are (nearly) imaginary: 

( ) ( )HTBHTTHBE

N
m rrN

m
rrrrNK

mei B

ln
cos2tan

ln
2 22cossin2

βππω
ββπ−

±=′  

Physically, in radial impellers the presence of the blades 
prevents the formation of synchronous pressure waves with 
significant extension in the azimuthal direction, capable of 
reacting in a coherent fashion on the impeller.  

Notice that the flow solution depends on the parameter , 
whose relationship with the extent of cavitation has already been 
investigated in our earlier work (d’Agostino and Venturini, 2002 
[9]) with the help of a quasi-homogeneous isenthalpic cavitation 
model with thermal effects (Rapposelli and d’Agostino, 2001 
[35]). However, as mentioned earlier, rotordynamic forces are 
only weakly dependent on the extent of cavitation and the value 
of . 

KE

KE

 
 

 
Figure 7. Comparison of the normalized radial rotordynamic 
force, , obtained from the present theory (lower figure) for 

 and several rotational speeds 
f R

2 ⋅10KE =  sec−5 2 Ω  with the 
experimental results (upper figure) of Jery, 1987 [12], for a 
centrifugal impeller with N , B = 5 φ = 0.060 , β = 23° , 

, rT = b =81 mm 16 mm and 5.0=TH rr . 

The capability of the model of qualitatively capturing the 
main phenomena controlling the development of rotordynamic 
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fluid forces in whirling centrifugal impellers is confirmed by 
Figures 7 and 8, which illustrate the sensitivity of the solution to 
changes of the rotational speed Ω  and flow coefficient φ . In 
both cases the predicted impact of these parameters is small, 
consistently with typical experimental results from Jery, 1987 
[12], shown in the upper parts of the figures.  The forces in 
Figure 7 have been calculated with fixed K  and therefore 
variable . With variable 

E

EKE 2Ω= Ω  and constant  the 
computed curves overlap, showing that    is a well-suited 
similarity parameter for cavitation effects. Besides, the curves 
computed for constant 

  E
E

Ω  and variable    (not shown here) 
almost overlap, confirming that in radial impellers the 
rotordynamic forces are practically insensitive to cavitation, in 
accordance with the experimental data by Franz et al. 1989 [29].   

E

 
 

 
Figure 8. Comparison of the normalized tangential 
rotordynamic force, , obtained from the present theory (lower 
figure) for  and several rotational speeds 

fT

22 =EKΩ Ω  with the 
experimental results (upper figure) of Jery, 1987 [12], for a 
centrifugal impeller with N , B = 5 φ = 0.060 , β = 23° , 

, brT = 81 mm = 16 mm and 5.0=TH rr . 

Figure 8 shows the negligible influence of the flow 
coefficient φ  on the rotordynamic forces: that again agrees with 
the experimental data. However, it should be emphasized that 
different values of Ω  and φ  correspond to very different 
rotordynamic forces in axial inducers, and that our approach to 
cavitation modeling correctly reflect this aspect (d’Agostino and 
Venturini, 2002 [9]; Venturini, 2003 [36]). 

The present theory can also be used to investigate the 
dependence of rotordynamic whirl forces on the impeller 
geometry. Specifically, Figures 9, 10 and 11 illustrate the 
predicted effects of the number of blades, , the blade angle, NB

β , and the hub-to-tip radius ratio, TH rr . As expected, the 
magnitude of rotordynamic forces decreases as the number of 
blades increases, but their stabilizing/destabilizing nature is not 
significantly affected (Figure 9). In this respect it is worth 
noting that the accuracy of the model increases with N  
because the spiral coordinate system more closely approximates 
the actual geometry of the impeller when the blade channels are 
narrower.  

B

= 5

Ω
b

 
 

 
Figure 9. Normalized radial (upper figure) and tangential (lower 
figure) rotordynamic forces, f  and , predicted by the 
present theory as functions of the whirl ratio 

R fT

Ωω  for a 
centrifugal impeller with variable number of blades N  
(dotted line), 6 (solid line) and 8 (dash-dotted line), 

B

= 1000 rpm , φ = 0.092 , β = 23° , , , rT 81 mm= rH = 40 mm
= 16 mm and Ω 2KE = 1. 

Figure 10 shows that both the radial and tangential components 
of the rotordynamic force decrease at lower blade angles. At 
higher values of β = 40°  the radial force is destabilizing only 
for negative whirl, and the tangential force undergoes two zero 
crossings, being potentially destabilizing only for 
supersynchronous whirl ( 1>Ωω ), where, however, the radial 
force is not capable of sustaining the eccentricity of the impeller. 

Finally, Figure 11 shows that rotordynamic forces and their 
stabilizing/destabilizing properties are relatively insensitive to 
the hub-to-tip radius ratio, at least in the range of values 
meaningful for radial impellers. 
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CONCLUSIONS 
The present theory predicts that blade cavitation does not 

appreciably modify rotordynamic fluid forces on whirling and 
centrifugal impellers, in accordance with the experimental 
evidence and in striking contrast with the observed behavior of 
axial inducers. 

 
 

 
Figure 10. Normalized radial (upper figure) and tangential 
(lower figure) rotordynamic forces,  and , predicted by the 
present theory as functions of the whirl ratio 

f R fT

Ωω  for a 
centrifugal impeller with variable blade angle β = 20°

NB

 (dotted 
line),  (solid line) and  (dash-dotted line), , 30° 40° = 7
Ω = 1000 rpm , φ = 0.092 , , , rT = 81 mm rH = 40 mm
b = 16 mm and Ω 2KE = 1. 

Comparison with the results of a similar analysis of cavitating 
inducers confirms that the contribution of cavitation to the 
rotordynamic whirl forces is only significant when the standing 
pressure waves excited in the blade channels by the impeller 
motion are capable of exerting a synchronous and coherent 
action on the rotor. For this to happen: 
• the blade channels must be long enough in the azimuthal 

direction for the pressure wave to become at least partly 
coherent with the channel rotation around the axis: only in 
this case the resulting forces do not average out and 
generate appreciable fluid reactions on the rotor; 

• possibly the cavitating flow in the blade channels must 
become resonant, in order to maximize the amplitude of 
the pressure fluctuations. 

The first condition can never be satisfied in radial impellers due 
to the limited azimuthal extension of the blade channels. This 
geometric limitation is the essential reason for the different 
behavior rotordynamic whirl forces in cavitating radial and 
axial impellers. According to the predictions of the present 
theory, not even the second condition is verified, since natural 
frequencies are essentially imaginary.  

 
 

 
Figure 11. Normalized radial (upper figure) and tangential 
(lower figure) rotordynamic forces,  and , predicted by the 
present theory as functions of the whirl ratio 

f R fT

Ωω  for a 
centrifugal impeller with variable hub-to-tip radius ratio 

3.0=TH rr
NB =

 (dotted line),  (solid line) and 0.  (dash-dotted 
line), , 

0.5 8
7 Ω = 1000 rpm , φ = 0.092 , β = 23° , 

, rT = 81 mm b = 16 mm and Ω 2KE = 1. 
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